integration of sin to the power 5x
Attachments:
Answers
Answered by
0
∫sin5xdx
1
Use Trigonometric Reduction Formulas
-\frac{\sin^{4}x\cos{x}}{5}+\frac{4}{5}\int \sin^{3}x \, dx−5sin4xcosx+54∫sin3xdx
2
Use Pythagorean Identities: \sin^{2}x=1-\cos^{2}xsin2x=1−cos2x
-\frac{\sin^{4}x\cos{x}}{5}+\frac{4}{5}\int (1-\cos^{2}x)\sin{x} \, dx−5sin4xcosx+54∫(1−cos2x)sinxdx
3
Use Integration by Substitution on \int (1-\cos^{2}x)\sin{x} \, dx∫(1−cos2x)sinxdx
Let u=\cos{x}u=cosx, du=-\sin{x} dxdu=−sinxdx
4
Using uu and dudu above, rewrite \int (1-\cos^{2}x)\sin{x} \, dx∫(1−cos2x)sinxdx
\int -(1-{u}^{2}) \, du∫−(1−u2)du
5
Use Power Rule: \int {x}^{n} \, dx=\frac{{x}^{n+1}}{n+1}+C∫xndx=n+1xn+1+C
\frac{{u}^{3}}{3}-u3u3−u
6
Substitute u=\cos{x}u=cosx back into the original integral
\frac{\cos^{3}x}{3}-\cos{x}3cos3x−cosx
7
Rewrite the integral with the completed substitution
-\frac{\sin^{4}x\cos{x}}{5}+\frac{4}{5}(\frac{\cos^{3}x}{3}-\cos{x})−5sin4xcosx+54(3cos3x−cosx)
8
Add constant
-\frac{\sin^{4}x\cos{x}}{5}+\frac{4}{5}(\frac{\cos^{3}x}{3}-\cos{x})+C−5sin4xcosx+54(3cos3x−cosx)+C
Done
1
Use Trigonometric Reduction Formulas
-\frac{\sin^{4}x\cos{x}}{5}+\frac{4}{5}\int \sin^{3}x \, dx−5sin4xcosx+54∫sin3xdx
2
Use Pythagorean Identities: \sin^{2}x=1-\cos^{2}xsin2x=1−cos2x
-\frac{\sin^{4}x\cos{x}}{5}+\frac{4}{5}\int (1-\cos^{2}x)\sin{x} \, dx−5sin4xcosx+54∫(1−cos2x)sinxdx
3
Use Integration by Substitution on \int (1-\cos^{2}x)\sin{x} \, dx∫(1−cos2x)sinxdx
Let u=\cos{x}u=cosx, du=-\sin{x} dxdu=−sinxdx
4
Using uu and dudu above, rewrite \int (1-\cos^{2}x)\sin{x} \, dx∫(1−cos2x)sinxdx
\int -(1-{u}^{2}) \, du∫−(1−u2)du
5
Use Power Rule: \int {x}^{n} \, dx=\frac{{x}^{n+1}}{n+1}+C∫xndx=n+1xn+1+C
\frac{{u}^{3}}{3}-u3u3−u
6
Substitute u=\cos{x}u=cosx back into the original integral
\frac{\cos^{3}x}{3}-\cos{x}3cos3x−cosx
7
Rewrite the integral with the completed substitution
-\frac{\sin^{4}x\cos{x}}{5}+\frac{4}{5}(\frac{\cos^{3}x}{3}-\cos{x})−5sin4xcosx+54(3cos3x−cosx)
8
Add constant
-\frac{\sin^{4}x\cos{x}}{5}+\frac{4}{5}(\frac{\cos^{3}x}{3}-\cos{x})+C−5sin4xcosx+54(3cos3x−cosx)+C
Done
Similar questions