Math, asked by animishchopade123, 1 year ago

Integration of sin x [log cos x] dx

Answers

Answered by kanhaichouhan786
3

Answer:

_cos x log sin x

here is your answer

Answered by shalusingh583
5

Answer:

The Integration for the given function will be:

-cosx\ log(cosx)+cosx+c

Step-by-step explanation:

Given integration is:

\displaystyle\int sinx[log\ cosx]\ dx

Here we are applying the formula of integration by parts method that has been shown below:

\displaystyle\int (uv)dx=u\displaystyle\int v\ dx-\displaystyle\int [\dfrac{d}{dx}(u)\displaystyle\int v\ dx]dx

Here:

u=log(cosx)\\v=sinx

Hence integrating:

=log(cosx)\displaystyle\int sinx\ dx-\displaystyle\int [\dfrac{d}{dx}[log\ cosx]\displaystyle\int sinx\ dx]dx\\

Hence we know the formula of integration:

\displaystyle\int sinx\ dx=-cosx+c\\ \displaystyle\int cosx\ dx=sinx+c

Therefore:

=log(cosx)\cdot (-cosx)-\displaystyle\int [\dfrac{1}{cosx}(-sinx)\cdot (-cosx)]dx\\=-cosx\ log(cosx)-\displaystyle\int sinx\ dx\\=-cosx\ log(cosx)+cosx+c

Here c is the integration constant.

Similar questions