Math, asked by psatyam1778, 1 year ago

Integration of sin x minus alpha upon sin x + alpha

Answers

Answered by IamIronMan0
18

Answer:

 \int \frac{ \sin(x -  \alpha ) }{ \sin(x +  \alpha ) } dx \\  \:  \\ put \:  \: y = x +  \alpha \:  \implies \: dy = dx  \\  \\  \int \frac{ \sin(y -2 \alpha  ) }{ \sin( y) } dy \\  \\  =  \int \:  \frac{ \sin(y) \cos(2 \alpha )  -  \cos(y)   \sin(2 \alpha ) }{ \sin(y) } dy \\  \\ =   \int \: ( \cos(2 \alpha )  -  \sin(2 \alpha )  \cot(y) )dy \\  \\  = y \cos(2 \alpha )  -  \sin(2 \alpha )  ln( \sin(y) )  + c \\  \\  = (x +  \alpha ) \cos(2 \alpha )  -  \sin(2 \alpha )  ln( \sin(x +  \alpha ) ) + C

Similar questions