Math, asked by akshat6250, 1 year ago

integration of sin2x/(1-cos2x) (2-cos2x)

Answers

Answered by 123sachin
9
hint only:- put cos2x = t u get sin2x *2 after this use partial fraction method for solving this problem it become very simple
Answered by hukam0685
9

Answer:

\int \frac{sin \: 2x}{(1 - cos \: 2x)(2 - cos \: 2x)} dx\\\\ =log \bigg( \sqrt{  \bigg| \frac{1 - cos \: 2x}{2 - cos \: 2x}  \bigg| }  \bigg)  + C \\

Step-by-step explanation:

To integrate

  \int \frac{sin \: 2x}{(1 - cos \: 2x)(2 - cos \: 2x)} dx \\  \\ let \: cos \: 2x = t \\  \\  - 2 \: sin \: 2x \: dx = dt \\  \\ sin \: 2x \: dx =  \frac{dt}{ - 2}  \\  \\ so \\  \\  -   \frac{1}{2} \int \frac{dt}{(1 - t)(2 - t)}  \\  \\

Now solve this by partial fraction

 \frac{1}{(1 - t)(2 - t)}  =  \frac{A}{1 - t}  +  \frac{B}{2 - t}  \\  \\  1 = A(2 - t) + B(1 - t) \\  \\ 1 = 2A + B  + t( - A - B) \\  \\ 2A + B= 1 \\  - A- B = 0 \\  \\ add \: both \: equations \\  \\ A = 1 \\  \\ B =  - 1 \\  \\

  -  \frac{1}{2} \int \frac{1}{1 - t}dt    +  \frac{1}{2}  \int  \frac{1}{2 - t}dt \\  \\  =   \frac{1}{2} . log( |1 - t| )   -  \frac{1}{2}   log( |2 - t| )  + C \\  \\  =  log \bigg( \sqrt{  \bigg| \frac{1 - t}{2 - t}  \bigg| }  \bigg)  + C

Undo substitution

 \int \frac{sin \: 2x}{(1 - cos \: 2x)(2 - cos \: 2x)} dx= log \bigg( \sqrt{  \bigg| \frac{1 - cos \: 2x}{2 - cos \: 2x}  \bigg| }  \bigg)  + c

Hope it helps you.

Similar questions