Math, asked by roy1300000, 11 months ago

integration of sin2x ​

Answers

Answered by ᎪɓhᎥⲊhҽᏦ
37

Answer:

Questions

  \tt\int\sin2x \: dx \\

Answer

Put 2x = t

 \implies \tt 2 =  \dfrac{dt}{dx}

  \implies\tt \: 2dx = dt \\

 \implies \tt \: dx \:  =  \dfrac{1}{2} dt

Put it, we get

 =  \int \tt \sin  t. \frac{1}{2} dt \\

  = \tt  \frac{1}{2} \int \tt \sin t \: dt \\

  = \dfrac{1}{2}.  (-  \cos t) + c \\

Now put the value of t we get ,

 \underline{\boxed{=  \tt -  \dfrac{1}{2} ( \cos2x) + c}}

Some Integral Formulae

 \int \rm  {x}^{n} dx =  \dfrac{ {x}^{n + 1} }{n + 1}   \: + c \\

 \int \rm  \cos x \: dx =  \sin x + c \\

 \int \rm  \ \sin  x \: dx =    - \cos  x + c \\

 \int \rm  { \sec }^{2} x \: dx =  \tan x + c \\

 \int \rm  {  \csc  }^{2} x \: dx =    - \cot  x + c \\

 \int \rm  \sec  x. \tan x \:  dx=  \sec x + c \\

 \int \rm    \csc   x.  \cot  x \:  dx=   -   \csc  x+ c \\

ᎪɓhᎥⲊhҽᏦ ( Brainly.in)

Thank you :)

Similar questions