Math, asked by muhammedalthaf9224, 1 month ago

Integration of (sin4x-cos2x)/cos x dx

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \frac{ \sin(4x)  -  \cos(2x) }{ \cos(x) } dx \\

  = \int \frac{ \sin(4x) }{ \cos(x) } dx   -  \int \frac{ \cos(2x) }{ \cos(x) } dx\\

  = \int \frac{4 \sin(x)  \cos(x)  \cos(2x) }{ \cos(x) } dx   -  \int \frac{2 \cos ^{2} (x) - 1 }{ \cos(x) } dx\\

  =4 \int \sin(x) (2 \cos^{2} (x) - 1)dx   -  \int (2 \cos(x)  -  \sec(x))  dx\\

In the first integral putting cos(x) = t,

  = - 4 \int (2t^{2} - 1)dx   -  2\int \cos(x) dx -  \int \sec(x) dx\\

  = -  \frac{8 { \cos}^{3} (x)}{3}   +  \cos(x)  -  2 \sin(x) -   ln( |  \sec(x) +  \tan(x)  | )  + c\\

Similar questions