integration of sin8x-cos8x
Answers
Answered by
0
Answer:
hey mate your answer is....
Step-by-step explanation:
Here use the formula, a^2-b^2=(a+b)(a-b), a^4+b^4=(a^2+b^2)-2a^2b^2
LHS is \sin^8 x- \cos ^8 x=(\sin^4 x- \cos ^4 x)(\sin^4 x+ \cos ^4 x)\\ \sin^8 x- \cos ^8 x=(\sin^2 x+ \cos ^2 x)(\sin^2 x- \cos ^2 x)[(\sin^2 x+ \cos ^2 x)^2-2\sin^2 x \cos ^2 x]\\ \sin^8 x- \cos ^8 x=(1)(\sin^2 x- \cos ^2 x)[(1)^2-2\sin^2 x \cos ^2 x]\\ \sin^8 x- \cos ^8 x=(\sin^2 x- \cos ^2 x)(1-2\sin^2 x \cos ^2 x)\\ =RHS
@rajsingh....
Answered by
1
Answer:
integration of sin8x-cos8x
Step-by-step explanation:
(sin8x=cos8x/8
(cos8x=-sin8x/8
cos8x/8+sin8x/8
Similar questions
India Languages,
5 months ago
Math,
5 months ago
English,
5 months ago
Chemistry,
11 months ago
Biology,
11 months ago