Math, asked by samiarimi097531, 8 months ago

integration of (sinx)^2
Write down the process pls

Answers

Answered by bhvisy
1

Answer:

we know that

cos2x=1-2sin^2x

so,

sin^2x=(1-cos2x)/2

integration sin^2x=integration ((1-cos2x)/2)

=x/2-sin2x/4

Answered by darshanradha3
2

Answer:

Step-by-step explanation:

First let us simplify (sin x)^2

(sin x)^2 = sin^{2}x

We know that

cos2x = 1 - 2sin ^{2} x

-2sin ^{2} x = cos 2x -1

2sin ^{2} x = -(cos 2x - 1)

2sin ^{2} x = -cos 2x + 1

2sin ^{2} x = 1 - cos 2x

sin ^{2} x  = \frac{1 - cos 2x }{2}

Now

sin ^{2} x dx = ∫\frac{1 - cos 2x }{2} dx

                = \frac{1}{2} ∫ 1 - cos 2x dx                   {\frac{1}{2} is constant so we took it out}

                = \frac{1}{2} [∫ 1 dx - ∫ cos 2x dx] + C     {C is constant}      

                = \frac{1}{2} [x - \frac{sin 2x}{2}] + C                 {Integration of 1 is x and integration of                                                                                

                                                                         cos 2x is  \frac{sin 2x}{2}  }

sin ^{2} x dx  =  \frac{x}{2} -  \frac{sin2x}{4} + C

Therefore  integration  of  (sin x)^2  is  \frac{x}{2} -  \frac{sin2x}{4} + C

                                           HOPE  YOU UNDERSTOOD

                                                      THANK YOU

Similar questions