Math, asked by bunnyamuru, 1 year ago

Integration of sinx/cos3x cos2x is ???

Answers

Answered by Pitymys
9

We have to find the indefinite integral  \int {\frac{\sin x}{\cos (3x)\cos (2x)}} \, dx   .

Now  \sin x=\sin (3x-2x)\\<br />\sin x=\sin (3x)\cos (2x)-\cos (3x) \sin (2x)<br />

The integral becomes,

 \int {\frac{\sin x}{\cos (3x)\cos (2x)}} \, dx=\int {\frac{\sin (3x)\cos (2x)-\cos (3x) \sin (2x)}{\cos (3x)\cos (2x)}} \, dx\\<br />\int {\frac{\sin x}{\cos (3x)\cos (2x)}} \, dx=\int [{\tan (3x)-\tan(2x)] \, dx\\

 \int {\frac{\sin x}{\cos (3x)\cos (2x)}} \, dx=\frac{1}{3} \ln|\sec(3x)|-\frac{1}{2} \ln|\sec(2x)|+C

Similar questions