Math, asked by man5jAditsubra6, 1 year ago

Integration of (Sinx+cosx)/(9+16sin2x)dx

Answers

Answered by ARoy
132
Please check the attachment. Thank you.
Attachments:
Answered by skyfall63
55

\bold{\left(\frac{\sin x+\cos x}{9+16 \sin 2 x}\right) d x=\frac{1}{40} \log \left[\frac{(5+4 \sin x-4 \cos x)}{5-4 \sin x+4 \cos x}\right]}

Step-by-step explanation:

Let,

I=\frac{\sin x+\cos x}{9+16 \sin 2 x}

We know that,

\sin ^{2} x+\cos ^{2} x=1 ; \sin ^{2} x=2 \sin x \cdot \cos x

(\sin x-\cos x)^{2}=\sin ^{2} x+\cos ^{2} x-2 \sin x \cdot \cos x=1-\sin 2 x \rightarrow(1)

I=\frac{\sin x+\cos x}{9+16-16+16 \sin 2 x}

I=\frac{\sin x+\cos x}{25-16(1-\sin 2 x)}

From (1)

I=\frac{\sin x+\cos x}{25-16(\sin x-\cos x)^{2}}

Consider integral on both sides with x

\int I d x=\int \frac{(\sin x+\cos x)}{25-16(\sin x-\cos x)^{2}} d x

Let

sinx - cosx = t

Differentiating both sides with x

\frac{d}{d x}(\sin x-\cos x)=\frac{d t}{d x}

\cos x-(-\sin x)=\frac{d t}{d x}

\cos x+\sin x=\frac{d t}{d x}

(\cos x+\sin x) d x=d t

\int I d x=\int \frac{d t}{25-16 t^{2}}

\int I d x=\int \frac{d t}{\frac{25}{16}-t^{2}}

\int I d x=\frac{1}{16}\left[\frac{1}{2\left(\frac{5}{4}\right)} \log \left(\frac{\frac{5}{4}+t}{\frac{5}{4}-t}\right)\right]

\int I d x=\frac{1}{16}\left[\left(\frac{4}{10}\right) \log \left(\frac{5+4 t}{5-4 t}\right)\right]

\int I d x=\frac{1}{40} \log \left[\frac{(5+4 \sin x-4 \cos x)}{5-4 \sin x+4 \cos x}\right]

Similar questions