Math, asked by vibraniumsilver4317, 1 year ago

integration of (sinx.e^x-(sin x + cos x)e^(sinx+cosx))/e^2sinx-2.e^sinx+1)

Answers

Answered by rohitkumargupta
16
HELLO DEAR,

PLEASE SEE THE ATTACHMENT


I HOPE ITS HELP YOU DEAR,
THANKS
Attachments:

PIYUSH2202: Bhai pls inbox me need your help pls
Answered by phillipinestest
5

Answer:

\frac {{ e ^ cos x }{ e^sinx - 1}} + c

Step-by-step explanation:

Let\quad I=∫\frac { e^{ cosx }sin\quad x-e^{ (sinx+cosx) }(sinx+cosx) }{ e^{ z\quad sinx }-e^{ sin\quad x }+1 } dx

=∫\frac { -e^{ cos\quad x }(e^{ sin\quad x }-1)+e^{ sin\quad x }cos\quad x }{ (e^{ sin\quad x }-1)^{ 2 } } dx

Put e^{cos x}^{-1} =z ⇒dz=e^{cos x}(-sinx)dx

and e^{{sin x}^{-1)}=te^{sin x}^{-1 }cosxdx=dt

∴I = ∫\frac { -e^{ cos\quad x }(-sinx+e^{ sinx }sinx+e^{ x }cosx) }{ (e^{ sin\quad x }-1)^{ 2 } } dx

∴I = ∫\frac {tdz –zdt} {t^2}

= \frac { z }{ t } + c

I = \frac {{ e ^ cos x }{ e^sinx - 1}} + c

Similar questions