Math, asked by sourabhc1631, 10 months ago

integration of |sinx| from 0 to 2pi​

Attachments:

Answers

Answered by shadowsabers03
16

We see that,

\sf{For\quad\!x\in[0,\ \pi],\quad|\sin(x)|=\sin(x)\quad\because\ \sin(x)\geq0}

\sf{For\quad\!x\in[\pi,\ 2\pi],\quad|\sin(x)|=-\sin(x)\quad \because\ \sin(x)\leq0}

Therefore,

\displaystyle\longrightarrow\sf{\int\limits_0^{2\pi}|\sin(x)|\ dx=\int\limits_0^{\pi}|\sin(x)|\ dx+\int\limits_{\pi}^{2\pi}|\sin(x)|\ dx}

\displaystyle\longrightarrow\sf{\int\limits_0^{2\pi}|\sin(x)|\ dx=\int\limits_0^{\pi}\sin(x)\ dx-\int\limits_{\pi}^{2\pi}\sin(x)\ dx}

Since \displaystyle\sf{\int\sin(x)\ dx=-\cos(x),}

\displaystyle\longrightarrow\sf{\int\limits_0^{2\pi}|\sin(x)|\ dx=-\big[\cos(x)\big]_0^{\pi}+\big[\cos(x)\big]_{\pi}^{2\pi}}

\displaystyle\longrightarrow\sf{\int\limits_0^{2\pi}|\sin(x)|\ dx=-\big[\cos(\pi)-\cos(0)\big]+\big[\cos(2\pi)-\cos(\pi)\big]}

\displaystyle\longrightarrow\sf{\int\limits_0^{2\pi}|\sin(x)|\ dx=-\big[-1-1\big]+\big[1-(-1)\big]}

\displaystyle\longrightarrow\underline{\underline{\sf{\int\limits_0^{2\pi}|\sin(x)|\ dx=4}}}

Hence 4 is the answer.

Similar questions