Math, asked by hate92, 1 year ago

Integration of sinx power 6 plus cosx power 6 divided by sin square x into cos square x​

Answers

Answered by Anonymous
11

Answer:

\bold\red{tanx-cotx-3x+C}

Step-by-step Explanation:

We have to integrate,

\int \frac{ { \sin }^{6} x  +  { \cos }^{6} x}{ { \sin }^{2} x { \cos}^{2} x  } dx

Using the formula,

( {a}^{3}  +  {b}^{3}) =  {(a + b)}^{3}   - 3ab(a + b)

We get,

Integration, I

 = \int \:  \frac{ {( { \sin }^{2}x +  { \cos }^{2} x) }^{ 3} - 3 { \sin }^{2} x{ \cos }^{2} x( { \sin}^{2} x +  { \cos }^{2}x)  }{ { \sin }^{2}x { \cos }^{2}x  } dx \\  \\  = \int \frac{(1 - 3 { \sin }^{2}x { \cos }^{2}x)  }{ { \sin }^{2} x { \cos }^{2} x} dx \\  \\  = \int( \frac{1}{ { \sin}^{2}x { \cos }^{2} x }  - 3)dx \\  \\  = \int( \frac{ { (\sin}^{2} x +  { \cos }^{2}x) }{ { \sin }^{2}x { \cos }^{2} x }  - 3)dx \\  \\  = \int( \frac{1}{ { \cos }^{2} x}  +  \frac{1}{ { \sin }^{2} x}  - 3)dx \\  \\  = \int( { \sec }^{2} x +   { \cosec }^{2}  x - 3)dx \\  \\  =  (tanx -  cotx - 3x + c)

Hence,

Integration = \bold\orange{tanx-cotx-3x+C}

Similar questions