Math, asked by aditya3210singh, 3 months ago

integration of (sinx+tanx)/(sinx-tanx)​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \frac{ \sin(x)  +  \tan(x) }{ \sin(x) -  \tan(x)  } dx \\

 =  \int \frac{  \frac{2 \tan( \frac{x}{2} ) }{1 +  \tan^{2} ( \frac{x}{2} ) }   +   \frac{2 \tan( \frac{x}{2} ) }{1 -  \tan^{2} ( \frac{x}{2} ) }  }{  \frac{2 \tan( \frac{x}{2} ) }{1 +  \tan^{2} ( \frac{x}{2} ) }    -    \frac{2 \tan( \frac{x}{2} ) }{1 -  \tan^{2} ( \frac{x}{2} ) }  } dx \\

 =  \int \frac{  \frac{1}{1 +  \tan^{2} ( \frac{x}{2} ) }   +   \frac{1 }{1 -  \tan^{2} ( \frac{x}{2} ) }  }{  \frac{1}{1 +  \tan^{2} ( \frac{x}{2} ) }    -    \frac{1}{1 -  \tan^{2} ( \frac{x}{2} ) }  } dx \\

 =  \int \frac{2}{ - 2 \tan^{2} ( \frac{x}{2} ) } dx \\

 =  -  \int \cot^{2} ( \frac{x}{2} ) dx \\

 =  -  2\int \frac{1}{2}  \cot^{2} ( \frac{x}{2} ) dx \\

 =  -  2\int \frac{1}{2} ( \cosec^{2} ( \frac{x}{2} ) - 1) dx \\

 =  -  2\int \frac{1}{2} (\cosec^{2} ( \frac{x}{2} ))dx  +  1 \int \: dx \\

 =  - 2 \cot( \frac{x}{2} )  + x + c \\

Similar questions