Math, asked by hritik24, 1 year ago

integration of {(sinx -xcosx)/x(x+sinx)}

Answers

Answered by GovindRavi
109
hope this hlp............................
Attachments:
Answered by amirgraveiens
17

Integration of {(sinx -xcosx)/x(x+sinx)} is sinx+C

Step-by-step explanation:

\frac{sinx+x-x-xcosx}{x(x+sinx)}dx

=\frac{sinx+x-x-xcosx}{x(x+sinx)}dx

=∫\frac{(sinx+x)- (x+xcosx)}{x(x+sinx)}dx

=∫\frac{(sinx+x)}{x(x+sinx)} -\frac{(x+xcosx)}{x(x+sinx)}dx

=∫\frac{1}{x}-\frac{(x+xcosx)}{x(x+sinx)}dx

=∫\frac{1}{x}dx -∫\frac{(x+xcosx)}{x(x+sinx)}dx

=∫\frac{1}{x}dx -∫\frac{x(1+cosx)}{x(x+sinx)}dx

Cancelling x in second integration.

=\ln|x|-∫\frac{1+cosx}{x+sinx} dx

Taking x+sinx=t

(1+cosx) dx=dt

Therefore \ln|x|-∫\frac{1}{t} dt

=\ln|x-\ln|t|+C

Now putting t=x+sinx

=ln|x| - ln|x|+sinx+C

=sinx+C

Similar questions