Math, asked by muski1606, 1 year ago

integration of sinxcosx by using substitution method

Answers

Answered by ajmalz444
1
∫sinxcosxdx

let sinx=u
differentiate with respect x on both sides we get
=>  cosxdx=du

Substitute the value of sinx and cosxdx in our equation 

=> ∫u*du = (u^2/2)+C = (sin^2x/2)+C
        
Answered by Anonymous
116

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{\int \:sinxcosx\:dx}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int \sin \left(x\right)\cos \left(x\right)dx=\dfrac{1}{2}\sin ^2\left(x\right)+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\text { Apply u - substitution: } u=\sin (x)

=\int \:udu

\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\dfrac{x^{a+1}}{a+1},\:\quad \:a\ne -1

=\dfrac{u^{1+1}}{1+1}

\mathrm{Substitute\:back}\:u=\sin \left(x\right)

=\dfrac{\sin ^{1+1}\left(x\right)}{1+1}

\text { Simplify } \dfrac{\sin ^{1+1}(x)}{1+1}: \dfrac{1}{2} \sin ^{2}(x)

=\dfrac{1}{2}\sin ^2\left(x\right)

\mathrm{Add\:a\:constant\:to\:the\:solution}

\large\boxed{\sf{=\dfrac{1}{2}\sin ^2\left(x\right)+C}}

Similar questions