Math, asked by komal1654, 1 year ago

integration of tan^-1√1-cos2x/1+cos2x​

Answers

Answered by Swarup1998
32
\underline{\texttt{Solution :}}

\mathrm{Now,\:\int tan^{-1}\sqrt{\frac{1-cos2x}{1+cos2x}}\:dx}

\mathrm{=\int tan^{1}\sqrt{\frac{(sin^{2}x+cos^{2}x)-(cos^{2}x-sin^{2}x)}{(sin^{2}x+cos^{2}x)+(cos^{2}x-sin^{2}x)}}\:dx}

\mathrm{=\int tan^{-1} \sqrt{\frac{sin^{2}x+cos^{2}x-cos^{2}x+sin^{2}x}{sin^{2}x+cos^{2}x+cos^{2}x-sin^{2}x}}\:dx}

\mathrm{=\int tan^{-1}\sqrt{\frac{2sin^{2}x}{2cos^{2}x}}\:dx}

\mathrm{=\int tan^{-1}\sqrt{tan^{2}x}\:dx}

\mathrm{=\int tan^{-1}(tanx)\:dx}

\mathrm{=\int x\:dx}

\mathrm{=\frac{x^{2}}{2}+C}

\texttt{where C is integral constant}

\to \boxed{\small{\mathrm{\int tan^{-1}\sqrt{\frac{1-cos2x}{1+cos2x}}\:dx = \frac{x^{2}}{2}+C}}}

\texttt{which is the required integral}

Swarup1998: :)
generalRd: Awesome dada
Anonymous: Great answer Bro!
Swarup1998: :))
Answered by trueboy
12

Answer is in attachment

thank you

Attachments:
Similar questions