Math, asked by abhishekgangwar122, 1 year ago

Integration of tan^-1(1+cosx/sinx)dx

Answers

Answered by rupali8153gmailcom2
1
hope this answer is helpful plz mark it as brainliest if u think I can help u just follow me
Attachments:

abhishekgangwar122: I ask integration not differentiate ,I also know this differenciation!!
Answered by Swarup1998
29
\boxed{\underline{\textsf{Formulas :}}}

1.\:\bold{sin2x = 2sinx cosx}

2.\:\bold{cos2x=cos^{2}x-sin^{2}x}

3.\:\bold{cotx=\frac{cosx}{sinx}}

4.\:\bold{cotx=tan(\frac{\pi}{2}-x)}

5.\: \bold{\int x^{n}=\frac{x^{n+1}}{n+1}+C}

\textsf{where C is integral constant.}

\boxed{\underline{\textsf{Solution :}}}

\textsf{Now,}\: \bold{\dfrac{1+cosx}{sinx}}

=\bold{\small{\dfrac{sin^{2}\frac{x}{2}+cos^{2}\dfrac{x}{2}+cos^{2}\dfrac{x}{2}-sin^{2}\dfrac{x}{2}}{2sin\dfrac{x}{2}cos\dfrac{x}{2}}}}

=\bold{\dfrac{2cos^{2}\dfrac{x}{2}}{2sin\dfrac{x}{2}cos\dfrac{x}{2}}}

=\bold{\dfrac{cos\dfrac{x}{2}}{sin\dfrac{x}{2}}}

=\bold{cot\dfrac{x}{2}}

=\bold{tan(\dfrac{\pi}{2}-\dfrac{x}{2})}

\to \bold{\dfrac{1+cosx}{sinx} = tan(\dfrac{\pi}{2}-\dfrac{x}{2})}

\to \bold{\bold{\tiny{tan^{-1}(\dfrac{1+cosx}{sinx})= tan^{-1}\{tan(\dfrac{\pi}{2}-\dfrac{x}{2})\}}}}

\to \bold{tan^{-1}\{\dfrac{1+cosx}{sinx}\}=\dfrac{\pi}{2}-\dfrac{x}{2}}

\textsf{On integration, we get}

\int \bold{tan^{-1}(\frac{1+cosx}{sinx})dx=\int (\frac{\pi}{2}-\frac{x}{2})dx}

=\bold{\frac{\pi}{2} \int dx - \frac{1}{2} \int xdx}

=\bold{\frac{\pi}{2}x - \frac{1}{2}*\frac{x^{2}}{2}+C}\:,

\textsf{where C is integral constant}

=\bold{\frac{\pi}{2}x - \frac{x^{2}}{4}+C}

\to \boxed{\boxed{\bold{\tiny{\int tan^{-1}(\frac{1+cosx}{sinx})dx = \frac{\pi}{2}x - \frac{x^{2}}{4}+C}}}}

\textsf{which is the required integral.}
Similar questions