integration of Tan^32x sec2x dx
Answers
Answered by
1
Write tan3(2x) as tan2(2x).tan(2x) = [sec2(2x)-1].tan(2x)
Now the function is :
Integral [sec2(2x)-1] . tan(2x) . sec(2x)dx
Put sec(2x) = u
sec(2x).tan(2x).dx = du/2
Integral [u2-1]/2
= u3/6 - u/4 + C
= sec3(2x)/6 - sec(2x)/4 + C
here is your answer...
hope it helps...
Now the function is :
Integral [sec2(2x)-1] . tan(2x) . sec(2x)dx
Put sec(2x) = u
sec(2x).tan(2x).dx = du/2
Integral [u2-1]/2
= u3/6 - u/4 + C
= sec3(2x)/6 - sec(2x)/4 + C
here is your answer...
hope it helps...
Similar questions
English,
8 months ago
English,
8 months ago
Math,
1 year ago
Psychology,
1 year ago
Science,
1 year ago