Math, asked by Sanchit8567, 1 year ago

integration of tan inverse(cosecx - cotx) dx​

Answers

Answered by aditya8618
12

Step-by-step explanation:

some rule to solve this question :

sinx/2 / cosx/2 = tanx/2

tan inverse ( tanx/2 ) = x/2

Attachments:
Answered by isyllus
3

Explanation:

I = \int \tan^-^1 (\csc x +\cot x)dx

I = \int \tan^-^1 (\csc x +\cot x)dx\\\\taking\\\\\tan^-^1 (\csc x +\cot x)dx\\\\\tan^-^1\left ( \frac{1}{\sin x}+\frac{\cos x}{\sin x} \right )\\\\\text{taking LCM }\\\\\tan^-^1\left ( \frac{1+\cos x}{\sin x} \right )

\tan^-^1 \left ( \frac{2\cos^2\frac{x}{2}}{2\sin^2\frac{x}{2} 2\cos^2\frac{x}{2}} \right )

we know that \cot x = \frac{\cos x}{\sin x}

thus

\tan^-^1 \left \left ( \cot \frac{x}{2} \right )=  \tan^-^1(\tan (\frac{\pi}{2}-\frac{x}{2}))\\\\=\frac{\pi}{2}-\frac{x}{2}

then \\\\I = \int (\frac{\pi}{2}-\frac{x}{2})dx\\\\\frac{\pi}{2}x -\frac{x^2}{4}+c

Similar questions