Math, asked by ayonijakumari, 1 year ago

integration of tan inverse (secX + tanx) dx


Rushikeshswami: hi
Rushikeshswami: (secx × tanx ) tanx + ( sec²x × secx)

Answers

Answered by kvvijin77
22

∫tan⁻1(secx+tanx)


=∫∫tan⁻1(1/cosx+sinx/cosx)

Attachments:

es3182: So whats the answer to 1 and 2?????
es3182: Lol i cant read that
es3182: ???
Rushikeshswami: hi
es3182: hey
Rushikeshswami: hi
es3182: anybody know what the answers are to 1 and 2????????
Rushikeshswami: what 1 & 2 ?
es3182: nvm
Rushikeshswami: what nvm
Answered by throwdolbeau
47

Answer:

The integration is explained step by step below :

Step-by-step explanation:

\text{To Find : }\int \tan^{-1}(\sec x+\tan x)dx\\\\\text{Solution :}\int \tan^{-1}(\sec x+\tan x)dx\\\\=\int \tan^{-1}(\frac{1}{\cos x}+\frac{\sin x}{\cos x})dx\\\\=\int \tan^{-1}(\frac{1+\sin x}{\cos x})dx\\\\=\int \tan^{-1}(\frac{1+\cos(\frac{\pi}{2}-x)}{\sin(\frac{\pi}{2}-x)})dx\\\\=\int \tan^{-1}(\frac{2\cos^2(\frac{\pi}{4}-\frac{x}{2})}{2\sin(\frac{\pi}{4}-\frac{x}{2})\cos(\frac{\pi}{4}-\frac{x}{2})})dx

=\int\tan^{-1}(\cot(\frac{\pi}{4}-\frac{x}{2}))dx\\\\=\int\tan^{-1}(\tan(\frac{\pi}{4}+\frac{x}{2}))dx\\\\=\int(\frac{\pi}{4}+\frac{x}{2})dx\\\\=\frac{\pi\cdot x}{4}+\frac{x^2}{4}+C

Hence the result.

Similar questions