integration of. tan.inverse.x.dx
Answers
Answered by
0
Step-by-step explanation:
∫ tan^(-1)x dx
Let tan^(-1)x = y , then tany = x .....(1)
Now, differentiating both sides w.r.t "y" :
sec²y * (dy/dx) = 1
dy/dx = 1/sec²y
dy*sec²y = dx
So, ∫ tan^(-1)x dx = ∫y*sec²y dy
Let f(y) = y
f'(y) = 1
Let g'(y) = sec²y
g(y) = tany
We know that :
∫f(y)*g'(y)dy = f(y)d(y) - ∫f'(y)*g(y)dy
So,
We know that :
∫f'(x) / f(x)dx = ln |f(x)| + c
∫y*sec²y dy
= ysec²y - ∫tanydy
= ysec²y - ∫siny/(cosy)dy
= ysec²y + ∫-siny/(cosy)dy
= [tan(-1)x][1+x²] + ln |cosy| + c
= [tan(-1)x][1+x²] -(1/2) ln |(x²+1)| + c
Because :
tan²y = x²
sec²y -1 = x²
sec²y = x² +1
secy = √(x² + 1)
cosy = 1/√(x² + 1)
Similar questions