integration of tan3 x
Answers
Answer:
IF MY ANSWER HELPS YOU SO PLZ THANKS AND FOLLOW ME...(smile wala emoji)
Step-by-step explanation:
A2A
I=∫tan(3x)dx
I=∫sin(3x)cos3xdx
substitude:
cos(3x)=u
−3×sin(3x)×dx=du
sin(3x)×dx=−du3
apply this conclusion to our integration:
I1=∫−13×1udu
I1=−13×ln|u|+C1,C1∈R
I=−13×ln|cos(3x)|+C,C∈R
hey mate your answer is here ⬇️⬇️⬇️⬇️
Integral of tan3(x)
Use what you have learned to integrate the function tan3(x).
Solution
This is a relatively simple integration; the method described below uses a sub-
stitution and the properties sec2 x = 1+tan2 x and tan x dx = − ln | cos x|+c.
tan3 x dx = tan x tan2 x dx (use an identity to reduce degree)
= tan x(sec2 x − 1) dx
= tan x sec2 x dx tan x dx � �� � � �� � −
� u du
= u du − (− ln | cos x| + c)
= 1
2
u2 + ln | cos x| + c
1 2 = 2
tan x + ln | cos x| + c