Math, asked by AryanPuranik, 1 year ago

Integration of :-
 \frac{1 +  \tan(x) }{ \cos {}^{2} (x) } dx
Step by step explanation and will be marked as brainliest.

Answers

Answered by siddhartharao77
5

Step-by-step explanation:

Given: \int \frac{1+tanx}{cos^2x}dx

\Longrightarrow \int \frac{1}{cos^2x} + \frac{tanx}{cos^2x} dx

\Longrightarrow \int \frac{1}{cos^2x} + \int \frac{tanx}{cos^2x} dx

\Longrightarrow tanx + \int tanx \ sec^2x \ dx

\Longrightarrow tan x + \int u \ du

\Longrightarrow tan x + \frac{u^2}{2}

\Longrightarrow \boxed{tan x + \frac{1}{2} tan^2 \ x + C}

Hope it helps!

Answered by Siddharta7
0

Integration of ((cos²x) /(1+tanx))

multiply and divide by sec^4 x

integration of ((cos²x)sec^4 x /(1+tanx)sec^4x )

integration of (sec^2 x /(sec^4x + tanx sec^4x ))

let u = tanx

du = - ln|cox| dx

substituting nad solving

Integration (cos²x/(1+tanx)) dx = 1/8(4x+sin(2x)+cos(2x)+2log(sin x+cos x))+C

Similar questions