Physics, asked by yadavji88880, 6 months ago

integration of
 \frac{3}{2 \sqrt{x} }

Answers

Answered by Anonymous
2

Given , the function is  \tt{\frac{3}{2 \sqrt{x} }}

Integrating wrt x , we get

 \implies \tt \int{\frac{3}{2 \sqrt{x} }} \:  \: dx

 \implies \tt  \frac{3}{2} \int{{ \frac{1}{ \sqrt{x} } }} \:  \: dx

 \implies \tt  \frac{3}{2} \int{{  {(x)}^{ \frac{ - 1}{2} }  } } \:  \: dx

 \implies \tt  \frac{3}{2}  \{  \frac{2 {(x)}^{ \frac{1}{2} } }{1} \}

 \implies \tt  3 {(x)}^{ \frac{1}{2} }

Hence , the anti - derivative is \tt  3 {(x)}^{ \frac{1}{2} }

Remmember :

 \implies \tt \int{{ {(ax)} }} \:  \: dx =   a \int{(x)} \:  \: dx

 \implies \tt \int{{ {(x)}^{n}  }} \:  \: dx =   \frac{ {(x)}^{n + 1} }{n + 1}

_____________ Keep Smiling

Answered by sandhyamalladi121
1

Given , the function is

\tt{\frac{3}{2 \sqrt{x} }} </p><p>

Integrating wrt x , we get

\implies \tt \int{\frac{3}{2 \sqrt{x} }} \: \: dx \\ </p><p></p><p>\implies \tt \frac{3}{2} \int{{ \frac{1}{ \sqrt{x} } }} \: \: dx</p><p> \\ </p><p>\implies \tt \frac{3}{2} \int{{ {(x)}^{ \frac{ - 1}{2} } } } \: \: dx</p><p> \\ </p><p>\implies \tt \frac{3}{2} \{ \frac{2 {(x)}^{ \frac{1}{2} } }{1} \}</p><p></p><p>\implies \tt 3 {(x)}^{ \frac{1}{2} }</p><p>

Hence , the anti - derivative is

\tt 3 {(x)}^{ \frac{1}{2} }</p><p>

Remmember :

\implies \tt \int{{ {(ax)} }} \: \: dx = a \int{(x)} \: \: dx \\ </p><p></p><p>\implies \tt \int{{ {(x)}^{n} }} \: \: dx = \frac{ {(x)}^{n + 1} }{n + 1}

_____________ Keep Smiling ☺

Similar questions