Math, asked by BrainlyWarrior, 1 year ago

Integration of ( \sqrt{tanx} + \sqrt{cotx} )

Answers

Answered by Swarup1998
10

Answer:

\displaystyle\mathrm{\int (\sqrt{tanx}+\sqrt{cotx})dx=2\sqrt{tanx}+C}

Solution:

Now, \displaystyle\mathrm{\int (\sqrt{tanx}+\sqrt{cotx})dx}

\displaystyle\mathrm{=\int \left(\sqrt{tanx}+\frac{1}{\sqrt{tanx}}\right)dx}

\displaystyle\mathrm{=\int \frac{tanx+1}{\sqrt{tanx}}dx}

---------------------------------------

We consider, tanx = z²

⇒ sec²x dx = 2z dz

⇒ (1 + tan²x) dx = 2z dz

⇒ (1 + z²) dx = 2z dz

⇒ dx = 2z dz /(1 + z²)

--------------------------------------

\displaystyle\mathrm{=\int \frac{z^{2}+1}{z}\:\frac{2z}{1+z^{2}}\:dz}

\displaystyle\mathrm{=2\int dz}

= 2z + C , where C is integral constant

\displaystyle\mathrm{=2\sqrt{tanx}+C}

\displaystyle\to \mathrm{\int (\sqrt{tanx}+\sqrt{cotx})dx=2\sqrt{tanx}+C}

Answered by julietiwari161
4

Answer:

  \huge \bold \red{answer}

hope it helps you plz mark it as brainlist ✌️

Attachments:
Similar questions