Math, asked by safar74, 2 months ago

Integration of the following

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{3x + 4}{6x + 7}dx

On multiply and divide by 2, we get

 \rm \:  \:  =  \: \dfrac{1}{2} \displaystyle\int\tt \dfrac{6x + 8}{6x + 7}dx

 \rm \:  \:  =  \: \dfrac{1}{2} \displaystyle\int\tt \dfrac{6x + 7 + 1}{6x + 7}dx

 \rm \:  \:  =  \: \dfrac{1}{2} \displaystyle\int\tt \dfrac{6x + 7}{6x + 7}dx + \dfrac{1}{2} \displaystyle\int\tt \dfrac{1}{6x + 7}dx

 \rm \:  \:  =  \: \dfrac{1}{2} \displaystyle\int\tt 1dx + \dfrac{1}{2} \displaystyle\int\tt \dfrac{1}{6x + 7}dx

 \rm \:  \:  =  \: \dfrac{1}{2}x  + \dfrac{1}{12}log |6x + 7| + c

 \red{ \boxed{ \because \sf{ \:\displaystyle\int\tt  {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1} + c}}}

 \red{ \boxed{ \because \sf{ \:\displaystyle\int\tt \frac{1 }{x}dx =  log(x)  + c }}}

Hence,

\bf\implies \: \displaystyle\int\tt \dfrac{3x + 4}{6x + 7}dx  =  \: \dfrac{1}{2}x  + \dfrac{1}{12}log |6x + 7| + c

Aliter Method

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{3x + 4}{6x + 7}dx

We use substitution method,

 \red{\rm :\longmapsto\:Put \: 6x + 7 = y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\ \: 6dx = dy}

Also,

\rm :\longmapsto\:x = \dfrac{y - 7}{6}

Hence,

Given integral reduced to

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{3\bigg(\dfrac{y - 7}{6}\bigg)  + 4}{y} \times \dfrac{1}{6} dy

 \rm \:  \:  =  \:  \dfrac{1}{6} \displaystyle\int\tt \dfrac{\bigg(\dfrac{y - 7}{2}\bigg)  + 4}{y} \: dy

 \rm \:  \:  =  \:\dfrac{1}{6} \displaystyle\int\tt \dfrac{\bigg(\dfrac{y - 7 + 8}{2}\bigg)}{y} \: dy

 \rm \:  \:  =  \:\dfrac{1}{6} \displaystyle\int\tt \dfrac{\bigg(\dfrac{y + 1}{2}\bigg)}{y} \: dy

 \rm \:  \:  =  \:\dfrac{1}{12} \displaystyle\int\tt \dfrac{y + 1}{y}dy

 \rm \:  \:  =  \:\dfrac{1}{12} \displaystyle\int\tt (1 \:  +  \: \dfrac{1}{y})dy

 \rm \:  \:  =  \: \dfrac{1}{12}(y + log |y|) + c

 \rm \:  \:  =  \: \dfrac{1}{12}(6x + 7 + log |6x + 7|) + c

Additional Information :-

\rm :\longmapsto\:\displaystyle\int\tt  {e}^{x}dx =  {e}^{x} + c

\rm :\longmapsto\:\displaystyle\int\tt cosx \: dx =  sinx \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\tt sinx \: dx =   -  \: cosx \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\tt tanx \: dx =   \: log(secx) \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\tt cotx \: dx =   \: log(sinx) \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\tt cosecx \: dx =   \: log(cosecx - cotx) \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\tt secx \: dx =   \: log(secx  + tanx) \:  +  \: c

Answered by Anonymous
0

We have,

\displaystyle \int \dfrac{3x + 4}{6x + 7}\ dx

\displaystyle = \dfrac12 \int \dfrac{6x + 8}{6x + 7}\ dx

\displaystyle = \dfrac12 \int \dfrac{6x + 7 + 1}{6x + 7}\ dx

\displaystyle = \dfrac12 \int \dfrac{6x + 7}{6x + 7}\ dx  +\dfrac12 \int \dfrac1{6x + 7}\ dx

\displaystyle = \dfrac12 \int1\ dx  +\dfrac1{12} \int \dfrac6{6x + 7}\ dx

\displaystyle = \dfrac x2  +\dfrac1{12} \int \dfrac{d(6x + 7)}{6x + 7}

\underline{ = \dfrac x2  +\dfrac1{12} \ln|6x + 7| + C}

Similar questions