Math, asked by Anonymous, 3 months ago

integration of u. e^-u. sin4u​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

let \:  \: i =  \int {e}^{ - u} . \sin(4u) du \\

Using Integration By Parts, we have,

 i=  {e}^{ - u}  \int \sin(4u) du -  \int( \frac{d}{du} ( {e}^{ - u} ) \int \sin(4u) du)du \\

i =  {e}^{ - u} . \frac{ -  \cos(4u) }{4}  -  \int -  {e}^{ - u} . -  \frac{ \cos(4u) }{4} du

i =  -  \frac{1}{4}   .{e}^{ - u} . \cos(4u)  -   \frac{1}{4}. \int {e}^{ - u}   \cos(4u) du \\

i =  -  \frac{1}{4}   .{e}^{ - u} . \cos(4u)  -   \frac{1}{4}.( {e}^{ - u}  \int \cos(4u) du -  \int( \frac{d}{du} ( {e}^{ - u}) \int \cos(4u) du)du \\

i =  -  \frac{1}{4}   .{e}^{ - u} . \cos(4u)  -   \frac{1}{8}. {e}^{ - u}  \sin(4u)    +   \frac{1}{4}  \int -  {e}^{ - u} . \frac{ \sin(4u) }{4} du \\

i =  -  \frac{1}{4}   .{e}^{ - u} . \cos(4u)  -   \frac{1}{8}. {e}^{ - u}  \sin(4u)     -   \frac{1}{8} \int {e}^{ - u}  \sin(4u) du \\

i =  -  \frac{1}{4}   .{e}^{ - u} . \cos(4u)  -   \frac{1}{8}. {e}^{ - u}  \sin(4u)    +   \frac{1}{8}i \\

i  -  \frac{i}{8} =  -  \frac{1}{4}   .{e}^{ - u} . \cos(4u)  -   \frac{1}{8}. {e}^{ - u}  \sin(4u)   \\

 \frac{7i}{8} =  -  \frac{1}{4}   .{e}^{ - u} . \cos(4u)  -   \frac{1}{8}. {e}^{ - u}  \sin(4u)     \\

i =  -  \frac{2}{7}   .{e}^{ - u} . \cos(4u)  -   \frac{1}{7}. {e}^{ - u}  \sin(4u)     \\

i =  -  \frac{1}{7}{e}^{ - u}.(2\cos(4u)   +  \sin(4u) )    \\

Similar questions