Math, asked by shreyayadav50, 11 months ago

integration of under √ 1 - cos X​

Answers

Answered by LeParfait
1

Solution:

Now, \mathsf{1-cosx}

\quad\mathsf{=1-(1-2\:sin^{2}\dfrac{x}{2})}

\quad\mathsf{=1-1+2\:sin^{2}\dfrac{x}{2}}

\quad\mathsf{=2\:sin^{2}\dfrac{x}{2}}

\implies \mathsf{\sqrt{1-cosx}=\sqrt{2}\:sin\frac{x}{2}}

\therefore \mathsf{\int \sqrt{1-cosx}\:dx}

\mathsf{=\sqrt{2}\:\int sin\dfrac{x}{2}\:dx}

\mathsf{=\sqrt{2}\:\dfrac{1}{\dfrac{1}{2}}\:(-cos\frac{x}{2})+c}

\quad where c is constant of integration

\mathsf{=-2\sqrt{2}\:cos\dfrac{x}{2}+c}

\quad This is the required integral.

Similar questions