Math, asked by akshat6089, 1 year ago

integration of under root of a+x/x

Answers

Answered by Pitymys
1

We have to find the indefinite integral  \int \sqrt{\frac{a+x}{x}}  \,dx .

Let us make the substitution,  \frac{a+x}{x}=t^2,x=\frac{a}{t^2-1} ,dx=-\frac{2at}{(t^2-1)^2}dt .

Under the above substitution the integral becomes,

 \int \sqrt{\frac{a+x}{x}}  \,dx =\int \sqrt{t^2} \frac{2at}{(t^2-1)^2}dt \\<br />\int \sqrt{\frac{a+x}{x}}  \,dx =\int at \frac{2t}{(t^2-1)^2}dt \\

Use integration by parts,

  \int \sqrt{\frac{a+x}{x}}  \,dx =-at \frac{1}{(t^2-1)}dt+a\int  \frac{1}{(t^2-1)}dt  \\<br /> \int \sqrt{\frac{a+x}{x}}  \,dx =- \frac{at}{(t^2-1)}dt+\frac{a}{2} \int (\frac{1}{t-1}-\frac{1}{t+1})  dt\\<br /> \int \sqrt{\frac{a+x}{x}}  \,dx =- \frac{at}{(t^2-1)}dt+\frac{a}{2}\ln |\frac{t-1}{t+1}|+C<br />

Back substituting,

    \int \sqrt{\frac{a+x}{x}}  \,dx =- \frac{a\sqrt{\frac{a+x}{x}}}{\frac{a+x}{x}-1}+\frac{a}{2}\ln |\frac{\sqrt{\frac{a+x}{x}}-1}{\sqrt{\frac{a+x}{x}}+1}|+C   \\<br />   \int \sqrt{\frac{a+x}{x}}  \,dx =-x\sqrt{\frac{a+x}{x}}++\frac{a}{2}\ln |\frac{\sqrt{a+x}-\sqrt{x}}{\sqrt{\sqrt{a+x}+\sqrt{x}}}|+C

Similar questions