Math, asked by ganeshshinde19999rs, 1 month ago

integration of underroot 9+x÷9-x .dx​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \sqrt{ \frac{9 - x}{9 + x} } \: dx

On rationalizing the denominator, we get

\rm \:  =  \:  \: \:\displaystyle\int\rm  \sqrt{ \frac{9 - x}{9 + x}  \times  \frac{9 - x}{9 - x} } \: dx

\rm \:  =  \:  \: \displaystyle\int\rm  \sqrt{ \frac{ {(9 - x)}^{2} }{(9 + x)(9 - x)} } \:dx

\rm \:  =  \:  \: \displaystyle\int\rm  \frac{9 - x}{ \sqrt{ {9}^{2}  -  {x}^{2} } }  \: dx

\rm \:  =  \:  \: \displaystyle\int\rm  \frac{9 - x}{ \sqrt{ 81  -  {x}^{2} } }  \: dx

\rm \:  =  \:  \:9 \displaystyle\int\rm  \frac{1}{ \sqrt{ 81  -  {x}^{2} } }  \: dx + \displaystyle\int\rm  \frac{ - x}{ \sqrt{81 -  {x}^{2} } } \: dx

We know,

\boxed{ \bf{ \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }\:  =  {sin}^{ - 1} \frac{x}{a} + c}}

So, using this identity, we get

\rm \:  =  \:  \: 9 \:  {sin}^{ - 1}\dfrac{x}{9} + P_1

where,

\rm :\longmapsto\:P_1 = \displaystyle\int\rm  \frac{ - x}{ \sqrt{81 -  {x}^{2} } }  \: dx

\bf\implies \:\displaystyle\int\bf  \sqrt{ \frac{9 - x}{9 + x} } \: dx =  9 \:  {sin}^{ - 1}\dfrac{x}{9} + P_1 -  -  - (1)

Now, Consider,

\rm :\longmapsto\:P_1 = \displaystyle\int\rm  \frac{ - x}{ \sqrt{81 -  {x}^{2} } }  \: dx

To evaluate this integral, we use method of Substitution,

\red{\rm :\longmapsto\:Put \:  \sqrt{81 -  {x}^{2} }  = y}

\red{\rm :\longmapsto\:81 -  {x}^{2} =  {y}^{2}}

\red{\rm :\longmapsto\: - 2x \: dx \:  =  \: 2y \: dy}

\red{\rm :\longmapsto\: - x \: dx \:  =  \: y \: dy}

So, on substituting these values, we get

\rm \:  =  \:  \: \displaystyle\int\rm  \frac{y \: dy}{y}

\rm \:  =  \:  \: \displaystyle\int\rm dy

\rm \:  =  \:  \: y \:  +  \: c

\rm \:  =  \:  \:  \sqrt{81 -  {x}^{2} }  \:  +  \: c

\bf\implies \:P_1 =   \sqrt{81 -  {x}^{2} }  \:  +  \: c

On substituting the value in equation (1), we get

\bf\implies \:\displaystyle\int\bf  \sqrt{ \frac{9 - x}{9 + x} } \: dx =  9 \:  {sin}^{ - 1}\dfrac{x}{9} +  \sqrt{81 -  {x}^{2} }  + c

Short Cut Trick :-

To evaluate the integral of the form

\rm :\longmapsto\:\displaystyle\int\rm  \sqrt{ \frac{a - x}{a + x} } \: dx

The result is

\boxed{ \bf{ \:  \:\displaystyle\int\bf  \sqrt{ \frac{a - x}{a + x} } \: dx =  a \:  {sin}^{ - 1}\dfrac{x}{a} +  \sqrt{ {a}^{2}  -  {x}^{2} }  + c}}

Similar questions