integration of (x+1)^4/x²
Answers
Answered by
1
Answer :
We know that,
(x + 1)⁴ = x⁴ + 4x³ + 6x² + 4x + 1
So, (x + 1)⁴ / x²
= (x⁴ + 4x³ + 6x² + 4x + 1)/x²
= x² + 4x + 6 + 4/x + 1/x²
So, ∫ (x + 1)⁴/x² dx
= ∫ (x² + 4x + 6 + 4/x + 1/x²) dx
= ∫ x² dx + 4 ∫ x dx + 6 ∫ dx + 4 ∫ dx/x + ∫ dx/x²
= x³/3 + 2x² + 6x + 4 logx - 1/x + c,
where c is integral constant
#MarkAsBrainliest
We know that,
(x + 1)⁴ = x⁴ + 4x³ + 6x² + 4x + 1
So, (x + 1)⁴ / x²
= (x⁴ + 4x³ + 6x² + 4x + 1)/x²
= x² + 4x + 6 + 4/x + 1/x²
So, ∫ (x + 1)⁴/x² dx
= ∫ (x² + 4x + 6 + 4/x + 1/x²) dx
= ∫ x² dx + 4 ∫ x dx + 6 ∫ dx + 4 ∫ dx/x + ∫ dx/x²
= x³/3 + 2x² + 6x + 4 logx - 1/x + c,
where c is integral constant
#MarkAsBrainliest
Similar questions