Math, asked by makwanamanpreet, 2 months ago

integration of x^2 sec invers x​

Answers

Answered by Anonymous
4

Given Integrand,

 \displaystyle \sf  \int  {x}^{}  {sec}^{ - 1} (x)dx

According to ILATE,

arcsec(x) is the first expression and x is the second one.

Integrating by parts,

  \implies \sf \: \displaystyle \sf   {sec}^{ - 1} (x) \int  {x}^{} dx -  \int \bigg( \dfrac{d( {sec}^{ - 1}x) }{dx}   \int {x}^{} dx\bigg)dx \\  \\   \implies \sf \: \displaystyle \sf   \dfrac{1}{2}  {x}^{2}  {sec}^{ - 1} (x) -   \dfrac{1}{2} \int  \dfrac{ {x}^{2} }{ |x|  \sqrt{ {x}^{2} - 1 } }dx  \\  \\   \implies \sf \: \displaystyle \sf   \dfrac{1}{2}  {x}^{2}  {sec}^{ - 1} (x) -   \dfrac{1}{2} \int  \dfrac{ {x}^{} }{  \sqrt{ {x}^{2} - 1 } } dx

Consider,

 \displaystyle \sf \: l = \int  \dfrac{ {x}^{} }{  \sqrt{ {x}^{2} - 1 } }

Let t = x² - 1.

Differentiating both sides w..r.t x,

 \longrightarrow \sf \: dt = 2xdx \\  \\  \longrightarrow \sf \:  \dfrac{dt}{2x}  = dx

Further,

 \displaystyle \sf \: l = \int  \dfrac{ {x}^{} }{  \sqrt{ {x}^{2} - 1 } }  \\  \\  \longrightarrow \displaystyle \sf \: l = \int  \dfrac{x}{ \sqrt{t} }  \dfrac{dt}{2x}  \\  \\ \longrightarrow \displaystyle \sf \: l =  \dfrac{1}{2} \int   {t}^{ {}^{ -  \frac{1}{2} } }dt  \\  \\ \longrightarrow \displaystyle \sf \: l =  \sqrt{x {}^{2}  - 1}

Thus,

 \boxed{ \boxed{ \displaystyle \sf  \int  {x}^{}  {sec}^{ - 1} (x)dx =  \dfrac{ {x}^{2}  {sec}^{ - 1}(x) }{2}  -  \dfrac{1}{2}( \sqrt{ {x}^{2}  - 1}  )  + c}}

..

Answered by Anonymous
0

I hope it helps all.

Thanks

Attachments:
Similar questions