Math, asked by Subhushanmukh, 1 month ago

integration of √[(x+2 / x-2 )² + (x-2 / x+2)² - 2]​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

The given integral is

\rm :\longmapsto\:\displaystyle\int_{-1}^1\sf  \sqrt{ {\bigg(\dfrac{x + 2}{x - 2} \bigg) }^{2} + {\bigg(\dfrac{x - 2}{x + 2} \bigg) }^{2} - 2 } \: dx

We know,

\boxed{ \sf{ \:{\bigg(x - \dfrac{1}{x} \bigg) }^{2} =  {x}^{2} +  \frac{1}{ {x}^{2} } - 2}}

So, using this identity we get

\rm  \:  =  \: \:\displaystyle\int_{-1}^1\sf  \sqrt{ {\bigg(\dfrac{x + 2}{x - 2}  -  \dfrac{x - 2}{x + 2}  \bigg) }^{2}  } \: dx

\rm  \:  =  \: \:\displaystyle\int_{-1}^1\sf  \sqrt{ {\bigg(\dfrac{ {(x + 2)}^{2}  -  {(x - 2)}^{2}  }{(x - 2)(x + 2)} \bigg) }^{2}  } \: dx

\rm  \:  =  \: \:\displaystyle\int_{-1}^1\sf   {\bigg(\dfrac{ {(x + 2)}^{2}  -  {(x - 2)}^{2}  }{(x - 2)(x + 2)} \bigg) } \: dx

\rm  \:  =  \: \:\displaystyle\int_{-1}^1\sf   {\bigg(\dfrac{ {x}^{2} + 4 + 4x  -  {x}^{2}   - 4  + 4x}{ {x}^{2}  - 4} \bigg) } \: dx

\rm  \:  =  \: \:\displaystyle\int_{-1}^1\sf   {\bigg(\dfrac{8x}{ {x}^{2}  - 4} \bigg) } \: dx

\rm  \:  =  \: 4\:\displaystyle\int_{-1}^1\sf   {\bigg(\dfrac{2x}{ {x}^{2}  - 4} \bigg) } \: dx

We know,

\boxed{ \sf{ \:\displaystyle\int\sf  \frac{f'(x)}{f(x)} \: dx = log |f(x)|  + c}}

Here,

\boxed{ \sf{ \: \frac{d}{dx}( {x}^{2} - 4) = 2x}}

So, using these, we get

\rm \:  =  \:  \:4 \:  log | {x}^{2}  - 4|_{-1}^1

\rm \:  =  \:  \:4 \:  log | {1}^{2}  - 4| - 4 \:  log | {( - 1)}^{2}  - 4|

\rm \:  =  \:  \:4 \:  log |1  - 4| - 4 \:  log |1  - 4|

\rm \:  =  \:  \:4 \:  log |3| - 4 \:  log |3|

\rm \:  =  \:  \:0

Additional Information :-

\boxed{ \sf{ \:\displaystyle\int_{a}^b\sf f(x) \: dx =  - \displaystyle\int_{b}^a\sf f(x) \: dx}}

\boxed{ \sf{ \:\:\displaystyle\int_{a}^b\sf f(x) \: dx  = \:\displaystyle\int_{a}^b\sf f(y) \: dy }}

\boxed{ \sf{ \:\:\displaystyle\int_{a}^b\sf f(x) \: dx  = \:\displaystyle\int_{a}^b\sf f(a + b - x) \: dy }}

\boxed{ \sf{ \:\:\displaystyle\int_{0}^a\sf f(x) \: dx  = \:\displaystyle\int_{0}^a\sf f(a - x) \: dy }}

Similar questions