Math, asked by khalidishasan, 3 months ago

integration of {x^4(1-x)^4}/(1+x^2) where the limit is from 0 to 1​

Answers

Answered by diajain01
7

refer to the attachment please

the integration sign is not available with me

so I did it in written..

HOPE IT HELPS

Attachments:
Answered by mathdude500
2

Given Question : -

\bf \:Evaluate \: \sf\int\limits_{0}^{1} \dfrac{ {x}^{4}  {(1 - x)}^{4}dx }{1+x^2}

___________________________________________

\bf \:\large \red{Identity \:  used:- } ✍

\bf \:  {(x - y)}^{4}  =  {x}^{4}  -  {4x}^{3} y + 4 {x}^{2}  {y}^{2}  - 4x {y}^{3}  +  {y}^{4}

\huge \orange{AηsωeR}✍

\bf \:\large \red{Consider} ✍

\bf\int\limits_{0}^{1} \dfrac{ {x}^{4}  {(1 - x)}^{4}dx }{1+x^2}

\sf \:  ⟼\bf\int\limits_{0}^{1} \dfrac{ {x}^{4}  {(1 - 4x + 6 {x}^{2}  - 4 {x}^{3} +   x}^{4})dx }{1+x^2}

\sf \:  ⟼\bf\int\limits_{0}^{1} \dfrac{  {( {x}^{4}  - 4 {x}^{5}  + 6 {x}^{6}  - 4 {x}^{7} +   x}^{8})dx }{1+x^2}

☆ As, degree of numerator > degree of denominator,

☆ So, after applying long division, we get

\sf \:  ⟼\bf\int\limits_{0}^{1}( {x}^{6}  - 4 {x}^{5}  +  {5x}^{4}  -  {4x}^{2}  + 4 -  \dfrac{4}{ {x}^{2} + 1 } )dx

\bf \:  ⟼ [\dfrac{1}{7} x^7-\dfrac{2}{3} x^6+x^5-\dfrac{4}{3} x^3-4 {tan}^{ - 1}x +4x]_0^1

\bf \:  ⟼ \dfrac{1}{7}  - \dfrac{2}{3}  + 1 -  \dfrac{4}{3}  + 4 - 4( {tan}^{ - 1} 1)

\bf \:  ⟼  \dfrac{1}{7}  - (\dfrac{4}{3}  + \dfrac{2}{3} ) + 5 - 4 \times \dfrac{\pi}{4}

\bf \:  ⟼ \dfrac{1}{7}  - 2 + 5 - \pi

\bf \:  ⟼ \dfrac{1}{7}  + 3 - \pi

\bf \:  ⟼ \dfrac{22}{7}  - \pi

____________________________________________

Similar questions