integration of x^4+1/x^6+1
Answers
Answered by
1
I don't know about it
Answered by
0
The given function is…
f(x)=x4+1x6+1f(x)=x4+1x6+1
=(x2+1)2–2x2(x2)3+13=(x2+1)2–2x2(x2)3+13
=(x2+1)2–2x2(x2+1)(x4−x2+1)=(x2+1)2–2x2(x2+1)(x4−x2+1)
=x2+1x4–x2+1−2x2(x3)2+1=x2+1x4–x2+1−2x2(x3)2+1
⇒f(x)=1+1x2x2+1x2−1−2x2(x3)2+1⇒f(x)=1+1x2x2+1x2−1−2x2(x3)2+1
Now differentiating both sides w.r.t x,we get…
∫f(x)dx=∫(1+1x2)dx(x−1x)2+2x⋅1x−1−2∫x2dx1+(x3)2∫f(x)dx=∫(1+1x2)dx(x−1x)2+2x⋅1x−1−2∫x2dx1+(x3)2
=∫d[x−1x](x−1x)2+12−23∫d(x3)1+(x3)2=∫d[x−1x](x−1x)2+12−23∫d(x3)1+(x3)2
=tan−1(x−1x)−23tan−1(x3)+C=tan−1(x−1x)−23tan−1(x3)+C
I=∫(x2+1)2−2x2(x2+1)(x4−x2+1)dxI=∫(x2+1)2−2x2(x2+1)(x4−x2+1)dx
I=∫x2+1x4−x2+1dx−2∫x2(x3)2+1dxI=∫x2+1x4−x2+1dx−2∫x2(x3)2+1dx
I=∫1x2+1(x−1x)2+1dx−2∫x2(x3)2+1dxI=∫1x2+1(x−1x)2+1dx−2∫x2(x3)2+1dx
Now let x−1x=tx−1x=t
Taking Derivative of Both Sides…
(1+1x2)dx=dt(1+1x2)dx=dt
Also make a second substitution x3=ux3=u
Once again taking derivative of both sides…
3x2dx=du3x2dx=du
Let’s take a look at the new face of our Integral…
I=∫1t2+1dt−23∫1u2+1duI=∫1t2+1dt−23∫1u2+1du
I=tan−1t−23tan−1u+CI=tan−1t−23tan−1u+C
Now put back the values of tt and uu
I=tan−1(x−1x)−23tan−1x3+CI=tan−1(x−1x)−23tan−1x3+C
And there we have it!
Similar questions