integration of x^4/(x^2+1)
Answers
Answered by
1
Answer:
do this sum on calculater
Step-by-step explanation:
Mark as brainlist
Answered by
0
Step-by-step explanation:
For the integrand #x^4/(x^2-1)#, we perform a long division to get it into an integrable form.
#x^4/(x^2-1)=(x^4-1+1)/(x^2-1)=((x^2-1)(x^2+1))/(x^2-1)+1/(x^2-1)=#
#=x^2+1+1/((x+1)(x-1))#
We now perform a partial fraction decomposition on the 2nd term
#1/((x+1)(x-1))=((x+1)-(x-1))/(2(x+1)(x-1))=#
#(x+1)/(2(x+1)(x-1))-(x-1)/(2(x+1)(x-1))=1/(2(x-1))-1/(2(x+1))#
So
#x^4/(x^2-1)=x^2+1+1/(2(x-1))-1/(2(x+1))#
and we can now integrate:
#intx^4/(x^2-1)dx=intx^2+1+1/(2(x-1))-1/(2(x+1))dx#
#=1/3x^3+x+1/2lnabs(x-1)-1/2lnabs(x+1)+"c"#
#=1/3x^3+x+1/2lnabs((x-1)/(x+1))+"c"#
Similar questions