integration of x^5/root 1+x^3 dx
Answers
Answered by
0
Answer:
Step-by-step explanation:
∫ x^5/root 1+x^3 dx
take x^5/2 common in root of denominator
∫x^5/root x^5/2(1/x^5/2+x^1/2 )
∫x^5/x^5 root ( x^-5/2 +x^1/2 )
cancel out x^5 and x^5
∫dx/root x^-5/2 +x^1/2
lets convert denominator in the form of root x^2 + a^2
x^-5/2 +x^1/2 - 2x^-1 + 2x^-1
(x^-5/4-x^1/4)^2 + ((root2) x^-1/2)^2
∫dx/root ((x^-5/4-x^1/4)^2 + ((root2) x^-1/2)^2
we know ∫dx/root(x^2+a^2) is log (x+ root x^+a^2 )
∫dx/ root(x^-5/4-x^1/4)^2 + ((root2) x^-1/2)^2
=log (x^-5/4-x^1/4 + root(x^-5/4-x^1/4)^2 + ((root2) x^-1/2)^2 ) /
-5/4 x^-9/4 -1/4x^-5/4
Similar questions