Math, asked by gourav7076, 1 year ago

integration of x sin inverse x

Answers

Answered by Shreya1001
18
here is the best way to get the answer to your question
Attachments:
Answered by babundrachoubay123
9

Answer:

\frac{x^2}{2}sin^{-1}x - \frac{1}{4}sin^{-1}x + \frac{x\times \sqrt(1 -x^2)}{4} + C

Step-by-step explanation:

According to this question

Given that

\int x sin^(-1)x dx

sin^{-1}x\int x dx - \int [\frac{d}{dx}(sin^{-1}) \int x dx] dx

sin^{-1}x\times \frac{x^2}{2} - \int [\frac{1}{\sqrt{1 - x^2}} \frac{1}{2}\times x^2] dx

sin^{-1}x\times \frac{x^2}{2} - \frac{1}{2}\int [\frac{ x^2}{\sqrt{1 - x^2}}] dx

sin^{-1}x\times \frac{x^2}{2} + \frac{1}{2}\int [\frac{ 1 -x^2 - 1}{\sqrt{1 - x^2}}] dx

sin^{-1}x\times \frac{x^2}{2} + \frac{1}{2}\int [\frac{ 1 -x^2}{\sqrt{1 - x^2}} - \int \frac{1}{\sqrt{1 - x^2}}] dx

sin^{-1}x\times \frac{x^2}{2} + \frac{1}{2}\int [{\sqrt{1 - x^2}} - \int \frac{1}{\sqrt{1 - x^2}}] dx

sin^{-1}x\times \frac{x^2}{2} + \frac{1}{2}[\frac{x\times \sqrt(1 -x^2)}{2} +  \frac{1}{2}sin^{-1}x - sin^{-1}x] + C

sin^{-1}x\times \frac{x^2}{2} + \frac{1}{2}[\frac{x\times \sqrt(1 -x^2)}{2} -  \frac{1}{2}sin^{-1}x]

\frac{x^2}{2}sin^{-1}x - \frac{1}{4}sin^{-1}x + \frac{x\times \sqrt(1 -x^2)}{4} + C

Similar questions