Math, asked by rajmilansaha, 1 year ago

integration of x square -2x+1

Answers

Answered by Shubhendu8898
9
Given,
integrant is x²- 2x+ 1.
we know that int if x^n with respect to x is {x^(n+1)}/n+1
see picture!!
.... Hope it helped you!!
Attachments:
Answered by pulakmath007
0

\displaystyle \sf   \int ( {x}^{2}  - 2x + 1)dx =  \frac{ {x}^{3} }{3}  -  {x}^{2}  + x + c

Correct question :

\displaystyle \sf   \int ( {x}^{2}  - 2x + 1)dx

Given :

\displaystyle \sf   \int ( {x}^{2}  - 2x + 1)dx

To find :

Integrate the integral

Formula :

\displaystyle \sf  \int  {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1}  + constant

Solution :

Step 1 of 2 :

Write down the given Integral

Here the given Integral is

\displaystyle \sf   \int ( {x}^{2}  - 2x + 1)dx

Step 2 of 2 :

Integrate the integral

\displaystyle \sf   \int ( {x}^{2}  - 2x + 1)dx

\displaystyle \sf   =  \int  {x}^{2} dx - \int 2x dx+  \int1dx

\displaystyle \sf   =  \int  {x}^{2} dx -2 \int  {x}^{1}  dx+  \int  {x}^{0} dx

\displaystyle \sf   =   \frac{ {x}^{2 + 1} }{2 + 1} - 2. \frac{ {x}^{1 + 1} }{1 + 1}  +  \frac{ {x}^{0 + 1} }{0 + 1}  + c  \: \:  \:  \: \bigg[ \:  \because \int  {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1}  + constant\bigg]

\displaystyle \sf   =   \frac{ {x}^{3} }{3} - 2. \frac{ {x}^{2} }{2}  +  \frac{ {x}^{ 1} }{ 1} + c

\displaystyle \sf   =   \frac{ {x}^{3} }{3} -  {x}^{2}   + x + c

Where c is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

#SPJ3

Similar questions