Math, asked by sumitjaysaval5, 1 year ago

integration of x.tanx​

Attachments:

Answers

Answered by rishi063422
1

sxtanndx I think this is the best


sumitjaysaval5: kya
Answered by Anonymous
3

Step-by-step explanation:

 =  >  \int \: x.tanx \: dx \\

Apply this formula

 \int u.vdx = u \int \: v.dx -  \int \frac{du}{dx} ( \int \: v.dx)dx \\

 \int \: x.tanx = x \int \: tanx.dx -  \int \:  \frac{dx}{dx} ( \int \: tanx.dx)dx \\  \\  \therefore \int x.tan x =  - x ln(cosx )  -  \int - (1)  ln(cosx) dx \\  \\  \therefore \int \: x.tanx =  - x ln(cosx)  +  \int \:  ln(cosx) dx \\  \\  \therefore \int \: x.tanx =  - x ln(cosx)  + cosx ln(cosx)  - cosx + c


sumitjaysaval5: ln(cosx) ka integration kaise Kiya aapne, plz explain to me. step by step
Similar questions