Math, asked by riyamaan246, 1 year ago

integration of xsec^2x.tanx dx

Answers

Answered by shivam508557
12

Answer:

The answer is explained above.

Attachments:
Answered by Swarup1998
14

To find : \int x\:sec^{2}x\:tanx\:dx = ?

Solution :

Let, tanx = z

⇒ sec²x dx = dz

and z = tan⁻¹x

Now, \int x\:sec^{2}x\:tanx\:dx

=\int z\:tan^{-1}z\:dz

=tan^{-1}z \int z\:dz-\int\{\frac{d}{dz}(tan^{-1}z)\times \int z\:dz\}dz

=\frac{z^{2}}{2}\:tan^{-1}z-\frac{1}{2}\int \frac{z^{2}}{z^{2}+1}dz

=\frac{z^{2}}{2}\:tan^{-1}z-\frac{1}{2}\int \big(1-\frac{1}{z^{2}+1}\big)dz

=\frac{z^{2}}{2}\:tan^{-1}z-\frac{z}{2} +\frac{1}{2}tan^{-1}z+C ,

where C is constant of integration

=\frac{x\:tan^{2}x}{2}-\frac{tanx}{2}+\frac{x}{2}+C ,

which is the required integral. (Ans.)

Similar questions