Math, asked by jaiLoke79, 1 year ago

integration of xtan- 1x

Answers

Answered by kvnmurty
2
This can be done by integration by parts.

I =  \int\limits^a_b {x\ tan^{-1}x} \, dx \\\\Let\ u=tan^{-1}x,\ \ \ u'=\frac{1}{1+x^2},\ \ \ \ v'=x,\ \ \ v=\frac{1}{2}x^2\\\\I=u\ v- \int\limits^a_b {u'\ v} \, dx \\\\=\frac{1}{2}x^2tan^{-1}x- \frac{1}{2}\int\limits^a_b {\frac{x^2}{1+x^2}} \, dx \\\\=\frac{1}{2}x^2tan^{-1}x- \frac{1}{2}\int\limits^a_b (1-{\frac{1}{1+x^2}}) \, dx \\\\=\frac{1}{2}x^2tan^{-1}x- \frac{1}{2}x+\frac{1}{2}tan^{-1}x+K\\\\=\frac{1}{2}[(1+x^2)tan^{-1}x-x]+K


kvnmurty: click on thanks button above
Similar questions