Math, asked by abdulrehman333334444, 7 months ago

Integration of y cosx dx

Answers

Answered by priyel
3

Step-by-step explanation:

 \int \sf x \: cosx \: dx \\  \\  \implies x \: \int  cos  \sf \: x \: dx - \int  \{ \frac{d}{dx}(x)\int \: cosx \: dx \}dx  \\  \\  \implies \: x \: sinx - \int \: sinx \: dx \\  \\   \boxed{ \implies \: x \: sinx + cosx + c}

Answered by Anonymous
34

\mathfrak{\bf{\underline{\underline{Qᴜᴇsᴛɪᴏɴ \ :}}}}

 \impliesㅤㅤㅤㅤㅤ\int \:  x \: \: cosx \: dx

\mathfrak{\bf{\underline{\underline{Sᴏʟᴜᴛɪᴏɴ  \ :}}}}

 \impliesㅤㅤ \:  \int \: x \: cosx \: dx \:  \\  \implies \:  x\int \:  \cos  x \: dx  \:  -  \int \: {{( \frac{d}{dx} (x) \:  \int \: cos \: x \:)}}  \\  \implies \: x \:  sin  x \:  -  \:  \int \: sinx \: dx \:  \\  \implies \:   \underline{\boxed{ \blue{\boxed {x \: sinx \:  +  \: cosx + c}}}}

Similar questions