Math, asked by Vaibhavatreyas9, 9 months ago

Integration problem

Attachments:

Answers

Answered by rishu6845
4

 \bold{ \underline{ \underline{ \pink{answer}}}} \longrightarrow \\ 1) \green{ \dfrac{5}{3}  {x}^{3}  - 4 {x}^{2}  + 5x + c} \\ 2) \blue{8 logx +  \dfrac{5}{x}  +  -  \dfrac{3}{ {x}^{2} }  + c} \\ 3) \green{ \dfrac{2}{3}  {x}^{ \frac{3}{2} }  +  \dfrac{2}{3}  {x}^{ \frac{1}{2} }  + c} \\ 4)  \blue{\dfrac{4}{5}  {t}^{5}  + t -  \dfrac{4}{3}  {t}^{3}  + c} \\ 5) \green{5sin \theta \:  + c} \\ 6)  \blue{log|sec x| + 7 {e}^{x}  + c} \\  \bold{ \underline{ \underline{ \pink{concept \: used}}}} \longrightarrow \\ 1)  \:  \orange{\displaystyle \int {x}^{n} dx =  \dfrac{ {x}^{n + 1} }{n + 1}  + c }\\ 2)  \orange{\displaystyle \int \dfrac{1}{x} dx = log |x|  + c} \\ 3)  \orange{\displaystyle \int \: cos \theta \: d \theta = sin \theta \:  + c} \\ 4) \orange{ \displaystyle \int \: tanx \: dx \:  = log |secx|  + c} \\ 5)  \orange{\displaystyle \int \:  {e}^{x} dx =  {e}^{x}  + c}

 \bold{ \underline{ \underline{ \pink{solution}}}}\longrightarrow \\ 1) \displaystyle \int \: (5 {x}^{2}  - 8x + 5) \: dx \\  = 5 \displaystyle \int {x}^{2} dx - 8 \displaystyle \int \: x \: dx \:  + 5 \displaystyle \int \: 1 \: dx \\  = 5 \dfrac{ {x}^{3 + 1} }{3 + 1}  - 8 \dfrac{ {x}^{1 + 1} }{1 + 1}  + 5x + c \\  =  \dfrac{5}{3}  {x}^{3}   - 4 {x}^{2}  + 5x + c

2) \displaystyle \int \: ( \dfrac{8}{x}  -  \dfrac{5}{ {x}^{2} }  +  \dfrac{6}{ {x}^{3} } )dx \\  = 8 \displaystyle \int \:  \dfrac{1}{x} dx - 5 \displaystyle \int \:  {x}^{ - 2} dx + 6 \displaystyle \int \:  {x}^{ - 3} dx \\  = 8 \: log |x|   - 5 \dfrac{ {x}^{ - 2 + 1} }{ - 2 + 1}  + 6 \dfrac{ {x}^{ - 3 + 1} }{ - 3 + 1}  + c \\  = 8log |x|   - 5 \dfrac{ {x}^{ - 1} }{ - 1}  + 6 \dfrac{ {x}^{ - 2} }{ - 2}  + c \\  = 8log |x|  +  \dfrac{5}{x}  -  \dfrac{3}{ {x}^{2} }  + c

3) \displaystyle \int( \sqrt{x}  +  \dfrac{3}{ \sqrt{x} } )dx \\  =  \displaystyle \int \:  {x}^{ \frac{1}{2} } dx \:  + 3 \displaystyle \int \:  {x}^{ -  \frac{1}{2} } dx \\  =  \dfrac{ {x}^{ \frac{1}{2} + 1 } }{ \frac{1}{2}  + 1}  +  \dfrac{1}{3}   \: \dfrac{ {x}^{ -  \frac{1}{2}  + 1} }{ (-  \frac{1}{2}  + 1)}  + c \\  =  \dfrac{2}{3}  {x}^{ \frac{3}{2} }  +  \dfrac{1}{3}  \dfrac{ {x}^{ \frac{1}{2} } }{ \dfrac{1}{2} }  + c \\  =  \dfrac{2}{3}  {x}^{ \frac{3}{2} }  +  \dfrac{2}{3}  {x}^{ \frac{1}{2} }  + c

4) \displaystyle \int \:  {(2 {t}^{2}  - 1)}^{2} dt \\  =  \displaystyle \int(4 {t}^{4}  + 1 - 4 {t}^{2} )dt \\  = 4 \displaystyle \int {t}^{4} dt +  \displaystyle \int1dt \:  - 4 \displaystyle \int {t}^{2} dt \\  = 4 \dfrac{ {t}^{4 + 1} }{4 + 1}  + t -  \dfrac{4}{3}  {t}^{3}  + c \\  =  \dfrac{4}{5}  {t}^{5}  + t -  \dfrac{4}{3}  {t}^{3}  + c

5) \displaystyle \int5cos \theta \: d \theta \\  = 5 \: sin \theta \:  + c

6) \displaystyle \int \: (tanx + 7 {e}^{x} )dx \\  =  \displaystyle \int \: tanx \: dx + 7 \displaystyle \int \:  {e}^{x} dx \\  = log |secx|  + 7 \:  {e}^{x}  + c

Answered by Anonymous
2

Answer:

i don't know coz i m not too intelligent like the first person who answered this question i.e. rishu bhai

Similar questions