Math, asked by harshbhardwaj22, 5 hours ago

Integration Questions.
∫ (6^6^6^x)  ×  (6^6^x)  ×  (6^x)dx

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \int  {6}^{ {6}^{ {6}^{x} } }  {6}^{ {6}^{x} } {6}^{x}  \: dx

To solve this integral, we use method of Substitution.

So, Substitute

\rm :\longmapsto\: {6}^{ {6}^{x} } = y

So,

\rm :\longmapsto\: \dfrac{d}{dx}{6}^{ {6}^{x} } =\dfrac{d}{dx} y

We know,

\boxed{\tt{ \dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga \: }}

So, using this, we get

\rm :\longmapsto\: {6}^{ {6}^{x} } \: log6 \: \dfrac{d}{dx} {6}^{x} = \dfrac{dy}{dx}

\rm :\longmapsto\: {6}^{ {6}^{x} } \: log6 \:  {6}^{x}  \: log6 = \dfrac{dy}{dx}

\rm :\longmapsto\: {6}^{ {6}^{x} }  \:  {6}^{x}  \:  {(log6)}^{2}  = \dfrac{dy}{dx}

\rm\implies \: {6}^{ {6}^{x} } {6}^{x} \: dx \:  = \dfrac{dy}{ {(log6)}^{2} }

So, on substituting the values in above integral, we get

\rm \:  =  \: \displaystyle \int  {6}^{y} \dfrac{dy}{ {(log6)}^{2} }

\rm \:  =  \: \dfrac{1}{ {(log6)}^{2} } \displaystyle \int  {6}^{y} \:  dy

\rm \:  =  \: \dfrac{1}{ {(log6)}^{2} }  \times \dfrac{ {6}^{y} }{log6}  + c

\rm \:  =  \: \dfrac{ {6}^{y} }{ {(log6)}^{3} }  + c

\rm \:  =  \: \dfrac{ {6}^{ {6}^{ {6}^{x} } } }{ {(log6)}^{3} }  + c

Hence,

\rm\implies \:\boxed{\tt{ \:  \:  \displaystyle \int  {6}^{ {6}^{ {6}^{x} } } \: dx \:  =  \:  \frac{ {6}^{ {6}^{ {6}^{x} } } }{ {(log6)}^{3}}  + c \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by EmperorSoul
9

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \int  {6}^{ {6}^{ {6}^{x} } }  {6}^{ {6}^{x} } {6}^{x}  \: dx

To solve this integral, we use method of Substitution.

So, Substitute

\rm :\longmapsto\: {6}^{ {6}^{x} } = y

So,

\rm :\longmapsto\: \dfrac{d}{dx}{6}^{ {6}^{x} } =\dfrac{d}{dx} y

We know,

\boxed{\tt{ \dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga \: }}

So, using this, we get

\rm :\longmapsto\: {6}^{ {6}^{x} } \: log6 \: \dfrac{d}{dx} {6}^{x} = \dfrac{dy}{dx}

\rm :\longmapsto\: {6}^{ {6}^{x} } \: log6 \:  {6}^{x}  \: log6 = \dfrac{dy}{dx}

\rm :\longmapsto\: {6}^{ {6}^{x} }  \:  {6}^{x}  \:  {(log6)}^{2}  = \dfrac{dy}{dx}

\rm\implies \: {6}^{ {6}^{x} } {6}^{x} \: dx \:  = \dfrac{dy}{ {(log6)}^{2} }

So, on substituting the values in above integral, we get

\rm \:  =  \: \displaystyle \int  {6}^{y} \dfrac{dy}{ {(log6)}^{2} }

\rm \:  =  \: \dfrac{1}{ {(log6)}^{2} } \displaystyle \int  {6}^{y} \:  dy

\rm \:  =  \: \dfrac{1}{ {(log6)}^{2} }  \times \dfrac{ {6}^{y} }{log6}  + c

\rm \:  =  \: \dfrac{ {6}^{y} }{ {(log6)}^{3} }  + c

\rm \:  =  \: \dfrac{ {6}^{ {6}^{ {6}^{x} } } }{ {(log6)}^{3} }  + c

Hence,

\rm\implies \:\boxed{\tt{ \:  \:  \displaystyle \int  {6}^{ {6}^{ {6}^{x} } } \: dx \:  =  \:  \frac{ {6}^{ {6}^{ {6}^{x} } } }{ {(log6)}^{3}}  + c \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions