Physics, asked by apoorv68, 11 months ago

integration sec4xtanx dx​

Answers

Answered by MaheswariS
0

Answer:

\bf{\int{sec^4x\:tanx\:dx​=\frac{sec^4}{4}+c}

Explanation:

I have applied change of variable method to solve this problem

I=\int{sec^4x\:tanx}\:dx

I=\int{sec^3x(secx\:tanx)\:dx

Take

t=secx

\frac{dt}{dx}=secx\:tanx

dt=secx\:tanx\:dx

Now,

I=\int{t^3}\:dt

I=\frac{t^4}{4}+c

\implies\:\bf{I=\frac{sec^4}{4}+c}

Similar questions