Math, asked by kamblepriyanka7551, 3 months ago

integration sin^4x cos^3x dx​

Answers

Answered by TheValkyrie
14

Answer:

\sf I= \dfrac{sin^5x}{5} -\dfrac{sin^7x}{7} +C

Step-by-step explanation:

Given:

\sf sin^4x\:cos^3x

To Find:

\displaystyle \sf \int\limits {sin^4x\:cos^3x} \, dx

Solution:

\displaystyle \sf \int\limits {sin^4x\:cos^3x} \, dx

\displaystyle \sf \implies \int\limits {sin^4x\:cos^2x\:cos\:x} \, dx

We know that,

cos² x = (1 - sin²x)

Substituting the value,

\displaystyle \sf \implies \int\limits {sin^4x\:(1-sin^2x)\:cos\:x} \, dx

Now let sin x = t

Differentiating on both sides,

cos x dx = dt

Substitute in the above integral,

\displaystyle \sf \implies \int\limits {t^4(1-t^2)} \, dt

\displaystyle \sf \implies \int\limits {t^4-t^6} \, dt

Separating the integral,

\displaystyle \sf \implies \int\limits {t^4} \, dt-\int\limits {t^6} \, dt

\sf \implies \dfrac{t^5}{5} -\dfrac{t^7}{7} +C

Now give back the value of t,

\sf \implies \dfrac{sin^5x}{5} -\dfrac{sin^7x}{7} +C

This is the required integral.

Answered by FFdevansh
7

Written by FFdevansh

Your required answer mate

Answer:

\sf I= \dfrac{sin^5x}{5} -\dfrac{sin^7x}{7} +CI=

5

sin

5

x

7

sin

7

x

+C

Step-by-step explanation:

Given:

\sf sin^4x\:cos^3xsin

4

xcos

3

x

To Find:

\displaystyle \sf \int\limits {sin^4x\:cos^3x} \, dx∫sin

4

xcos

3

xdx

Solution:

\displaystyle \sf \int\limits {sin^4x\:cos^3x} \, dx∫sin

4

xcos

3

xdx

\displaystyle \sf \implies \int\limits {sin^4x\:cos^2x\:cos\:x} \, dx⟹∫sin

4

xcos

2

xcosxdx

We know that,

cos² x = (1 - sin²x)

Substituting the value,

\displaystyle \sf \implies \int\limits {sin^4x\:(1-sin^2x)\:cos\:x} \, dx⟹∫sin

4

x(1−sin

2

x)cosxdx

Now let sin x = t

Differentiating on both sides,

cos x dx = dt

Substitute in the above integral,

\displaystyle \sf \implies \int\limits {t^4(1-t^2)} \, dt⟹∫t

4

(1−t

2

)dt

\displaystyle \sf \implies \int\limits {t^4-t^6} \, dt⟹∫t

4

−t

6

dt

Separating the integral,

\displaystyle \sf \implies \int\limits {t^4} \, dt-\int\limits {t^6} \, dt⟹∫t

4

dt−∫t

6

dt

\sf \implies \dfrac{t^5}{5} -\dfrac{t^7}{7} +C⟹

5

t

5

7

t

7

+C

Now give back the value of t,

\sf \implies \dfrac{sin^5x}{5} -\dfrac{sin^7x}{7} +C⟹

5

sin

5

x

7

sin

7

x

+C

This is the required integral.

Similar questions
English, 10 months ago