Math, asked by ampandey2016, 3 months ago

integration sin x / sin (x-a) dx​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int \sf \: \dfrac{sinx}{sin(x - a)}  \: dx

☆ On adding and Subtracting 'a' in angle of numerator,

 \rm \:=  \: \:\:\displaystyle\int \sf \: \dfrac{sin(x - a + a)}{sin(x - a)}  \: dx

 \rm \:=  \: \:\:\displaystyle\int \sf \: \dfrac{sin \bigg((x - a )+ a \bigg)}{sin(x - a)}  \: dx

 \rm \:=  \: \:\:\displaystyle\int \sf \: \dfrac{sin(x - a)cosa + sina \: cos(x - a)}{sin(x - a)}  \: dx

\red{\bigg \{ \because \: sin(x + y) = sinxcosy + sinycosx\bigg \}}

 \rm \:=  \: \:\displaystyle\int \sf \: \dfrac{ \cancel{sin(x - a)} \: cosa}{ \cancel{sin(x - a)}} dx + \displaystyle\int \sf \: \dfrac{sina \: cos(x - a)}{sin(x - a)} dx

 \rm \:=  \: \:\displaystyle\int \sf \: cosa \: dx \:  +  \: \displaystyle\int \sf \: sina \: cot(x - a) \: dx

\red{\bigg \{ \because \:\dfrac{cosx}{sinx}  = cotx \bigg \}}

 \rm \:=  \: \:(cosa) \: x +sina \:  logsin(x - a) + c

\red{\bigg \{ \because \: \displaystyle\int \sf \: kdx \:  =  \: x \: +  \:  c\bigg \}} \\ \red{\bigg \{ \because \: \displaystyle\int \sf \: cotx =  log(sinx) + c\bigg \}}

Additional Information :-

\green{\boxed{\bf{\displaystyle\int \sf \: sinx =  - cosx + c}}}

\green{\boxed{\bf{\displaystyle\int \sf \: cosx =  sinx + c}}}

\green{\boxed{\bf{\displaystyle\int \sf \: tanx =  log \: secx + c =  - log \: cosx+ c}}}

\green{\boxed{\bf{\displaystyle\int \sf \: cotx =  log \: sinx + c}}}

\green{\boxed{\bf{\displaystyle\int \sf \: secxtanx = secx+ c}}}

\green{\boxed{\bf{\displaystyle\int \sf \: cosecxcotx = - cosecx+ c}}}

\green{\boxed{\bf{\displaystyle\int \sf \:  {sec}^{2}x = tanx+ c }}}

\green{\boxed{\bf{\displaystyle\int \sf \:  {cosec}^{2}x =  - cotx+ c }}}

Similar questions