Integration sin2x /sin^4x + cos^4x dx
Answers
Answered by
2
Answer:
Step-by-step explanation:
∫ [ ( sin 2x ) / ( sin⁴ x + cos⁴ x ) ] dx
= ∫ [ ( 2 sin x cos x ) / ( sin⁴ x + cos⁴ x ) ] dx
Divide numerator and denominator both by cos⁴ x :
= ∫ [ ( 2 sin x / cos³ x ) / ( tan⁴ x + 1 ) ] dx
= ∫ [ 2 ( sin x / cos x )( 1 / cos² x ) / ( 1 + tan⁴ x ) ] dx
= ∫ { 1 / [ 1 + ( tan² x )² ] } • 2 tan x sec² x dx
= ∫ [ 1 / ( 1 + u² ) ] du, ………………
u = tan² x, du = 2 tan x sec² x dx
= [ tanֿ¹ ( u ) ] + C
= [ tanֿ¹ ( tan² x ) ] + C
Similar questions
Hindi,
1 day ago
Environmental Sciences,
1 day ago
Math,
3 days ago
English,
3 days ago
English,
8 months ago